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The character and stability of two- and three-dimensional thermocapillary driven
convection are investigated by numerical simulations. In two dimensions, Hopf bifur-
cation neutral curves are delineated for fluids with Prandtl numbers (Pr) 10.0, 6.78,
4.4 and 1.0 in the Reynolds number (Re)–cavity aspect ratio (Ax) plane correspond-
ing to Re 6 1.3 × 104 and Ax 6 7.0. It is found that time-dependent motion is only
possible if Ax exceeds a critical value, Axcr , which increases with decreasing Pr. There
are two coexisting neutral curves for Pr > 4.4. Streamline and isotherm patterns are
presented at different Re and Ax corresponding to stationary and oscillatory states.
Energy analyses of oscillatory flows are performed in the neighbourhood of criti-
cal points to determine the mechanisms leading to instability. Results are provided
for flows near both critical points of the first unstable region with Ax = 3.0 and
Pr = 10.

In three dimensions, attention is focused on the influence of sidewalls, located at
y = 0 and y = Ay , and spanwise motion on the transition. In general, sidewalls have
a damping effect on oscillations and hence increase the magnitude of the first critical
Re. However, the existence of spanwise waves can reduce this critical Re. At large
aspect ratios Ax = Ay = 15, our results with Pr = 13.9 at the lower critical Reynolds
number of the first unstable region are in good agreement with those from infinite
layer linear stability analysis.

1. Introduction
Understanding fluid motion is important in material processing technologies. In

crystal growth from the melt, single crystals with uniform material properties are
desired, but homogeneity in crystals can be destroyed if melt motion is unsteady
(Hurle 1967; Müller 1988). In the terrestrial environment, buoyancy and thermocap-
illarity are two major causes for convection. However, in a low-gravity environment,
thermocapillary convection becomes dominant.

Thermocapillary flows have received considerable attention in the past few decades.
Levich & Krylov (1969), Ostrach (1982) and Davis (1987) provide reviews. Early
theoretical articles can be found in Birikh (1966) and Yih (1968). A rich body of two-
dimensional numerical investigations is also available in the literature. Zebib, Homsy
& Meiburg (1985) investigated high Marangoni number thermocapillary convection in
a square cavity and confirmed the scaling analysis in Ostrach (1982) for the boundary
layer regime. Carpenter & Homsy (1990) further examined the Prandtl number depen-
dence, as well as structure and stability of this flow. Their results showed no evidence
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of unsteady behaviour for Ma up to O(105). Strani, Piva & Graziani (1982) and Wilke
& Löser (1983) provided results for thermocapillary convection in rectangular cavities
with aspect ratios other than one. Ben Hadid & Roux (1990) also considered the case
of fluid with small Prandtl number, Pr = 0.015, in cavities of various Ax without
discovering any oscillatory flow field. Results of numerical simulation of oscillatory
thermocapillary convection of a fluid with moderate Pr = 6.78 were reported by
Peltier & Biringen (1993). They provided a stability diagram in the (Ax,Ma)-plane,
and found a minimum critical Ax near 2.3 and a minimum critical Ma near 20 000
within the range Ax 6 3.8.

While most of the numerical investigations of thermocapillary convection consid-
ered two-dimensional situations, recent three-dimensional investigations can be found
in Saß, Kuhlmann & Rath (1996) which considered steady three-dimensional thermo-
capillary convection in a cubic container, and in Levenstam & Amberg (1995) which
investigated hydrodynamical instabilities of thermocapillary flow in a half-zone.

Discussions of instability mechanisms can be found in Smith & Davis (1983, referred
to as SD in this paper), and Smith (1986) for dynamic thermocapillary infinite liquid
layers, and in Wanschura et al. (1995) for thermocapillary liquid bridges. Peltier &
Biringen (1993) also provided some description of the oscillatory instability relating
the temporal evolution of large-scale structures in the flow and their interaction with
the temperature sensitive free surface.

Numerous experiments (Chun & Wuest 1979; Chun 1980; Preisser, Schwabe &
Scharmann 1983; Kamotani, Ostrach & Vargas 1984 and Velten, Schwabe & Schar-
mann 1991) have demonstrated the existence of thermocapillary instabilities, i.e.
when the Marangoni number (Ma) exceeds a critical value, the motion undergoes a
transition from steady to oscillatory flow.

More recent experiments by Daviaud & Vince (1993), De Saedeleer, Garcimartin
& Platten (1996), Riley & Neitzel (1996), and Braunfurth & Homsy (personal com-
munication 1996, 1997) examined various two-dimensional and three-dimensional
transitions, in pure thermocapillary flow or when combined with buoyancy-driven
flows, in layers and cavities. Typically, moderate-Pr fluids are used in these experi-
ments (10, 15, 13.9 and 4.4, respectively).

In the present study, we report on reasonably complete investigations of oscillatory
thermocapillary convection in rectangular cavities. In two dimensions, the influence
of Pr, Re, and Ax on the motion is studied. An energy analysis is performed to assess
various contributions to fluctuating quantities, and hence gain insight into the origin
of and identify the mechanism responsible for transition. In three dimensions, because
of high computing costs, we only consider Pr = 4.4 and 13.9 since experimental results
are available with these fluids. We investigate what would happen if a thermocapillary
flow in a cavity with Ax = 3 is allowed to become three-dimensional. The dual effects
of sidewalls which should have a damping effect, and the simultaneous possibility
of a spanwise instability turn out to be Pr-dependent. When Pr = 4.4, we find that
coexistence of spanwise and streamwise fluctuations destablizes the flow at Re lower
than that required to trigger a pure two-dimensional streamwise instability at the
same Ax. With Pr = 13.9, sidewalls continue to exhibit their damping effect even
with Ay as large as 20, while spanwise fluctuations are much weaker than streamwise
fluctuations when Re is near its first critical value. We also consider a case resembling
an infinite layer with Ax = Ay = 15. Reasonable agreement with the wave motion of
SD is demonstrated.
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2. Physical and mathematical models
2.1. Physical model for the two- and three-dimensional thermocapillary convection

Thermocapillary convection of an incompressible, Newtonian fluid is considered.
In two dimensions, the flow is in a rectangular cavity with height H and length
Ax × H (Ax is the length aspect ratio). Two vertical isothermal side-walls are kept
at temperatures Th on the left and Tc on the right. The bottom boundary is rigid
while the top boundary is a non-deformable flat free surface open to a passive gas
and also insulating. Both bottom and top boundaries are assumed to be adiabatic.
In three dimensions, the front and back sidewalls are introduced to form a box with
width Ay × H (Ay is the width aspect ratio). These sidewalls are also assumed to be
thermally adiabatic.

Surface tension on the free surface is assumed to be a linear function of temperature
as σ = σ0 − γ(T − T0), in which γ = −∂σ/∂T and subscript 0 is a reference state.

2.2. Mathematical models

2.2.1. Two-dimensional model in stream function – vorticity formulation

The non-dimensional mathematical model for the two-dimensional cavity thermo-
capillary convection is described by a stream function–vorticity formulation, as

∇2ψ = −ω, (1)

∂ω

∂τ
+ Re∇ · (ωV ) = ∇2ω, (2)

∂T

∂τ
+ Re∇ · (TV ) =

1

Pr
∇2T , (3)

where

V = (u, v) with u =
∂ψ

∂z
v = −∂ψ

∂x
, (4)

with boundary conditions:

ψ = 0,
∂ψ

∂x
= 0 T = 1 at x = 0;

ψ = 0,
∂ψ

∂x
= 0 T = 0 at x = Ax;

ψ = 0,
∂ψ

∂z
= 0

∂T

∂z
= 0 at z = 0

ψ = 0, ω =
∂T

∂x
,
∂T

∂z
= 0 at z = 1


(5)

Here length, temperature, velocity and time are assumed dimensionless with respect
to H , ∆T = (Th − Tc), γ∆T/µ and H2/ν, respectively, and

Pr =
ν

α
, Re = γ

∆TH

µν
. (6)

where µ, ν and α are dynamic viscosity, kinematic viscosity, and thermal diffusivity
respectively.
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2.2.2. Three-dimensional model in primitive variables

The dimensionless mathematical three-dimensional model of convection in a rect-
angular cavity (Ax × Ay × 1) is

∇ ·V = 0, (7)

∂V

∂τ
+ Re∇ · (VV ) = −∇P + ∇2V , (8)

∂T

∂τ
+ Re∇ · (TV ) =

1

Pr
∇2T , (9)

where

V = (u, v, w) (10)

with boundary conditions:

u = v = w = 0 on x = 0, Ax and y = 0, Ay and z = 0 (11)

and
∂u

∂z
= −∂T

∂x
,
∂v

∂z
= −∂T

∂y
, v = 0, on z = 1. (12)

All walls are considered adiabatic, except that

T = 1 on x = 0, T = 0 on x = Ax. (13)

2.2.3. Reynolds–Orr equation for two-dimensional energy analysis

To gain insight into the instability mechanisms involved, we perform an energy
analysis for flows with Re in the neighbourhoods of different critical points. The
oscillatory flow is decomposed into its mean and fluctuating components as

T = T0 + t, P = P0 + p, U = U0 + u, V = V0 + v, (14)

in which the pressure P is obtained by solving a Poisson equation after we compute
the velocity field.

Starting from the momentum equations in primitive variables and introducing the
fluctuation kinetic energy as k = 1

2
(u2 + v2), we derive the rate of change of k as

Dk

Dτ
= −Re

[
uu
∂U0

∂x
+ vv

∂V0

∂y
+ uv

(
∂U0

∂y
+
∂V0

∂x

)]

−u∂p
∂x
− v ∂p

∂y
+ ∇2k −

(
∂u

∂x

)2

−
(
∂u

∂y

)2

−
(
∂v

∂x

)2

−
(
∂v

∂y

)2

. (15)

Integrating over the whole domain and applying the Gaussian theorem, we find the
rate of change of the total fluctuation kinetic energy K to be

dK

dτ
=

d

dτ

(∫
Ω

kdΩ

)
= Ik1

+ Ik2
+ Ik3

, (16)

where

Ik1
= −Re

∫
Ω

[
uu
∂U0

∂x
+ vv

∂V0

∂y
+ uv

(
∂U0

∂y
+
∂V0

∂x

)]
dΩ, (17)

Ik2
=

∫
Ω

(∇2k)dΩ =

∫
Γ

u
∂u

∂y
dΓ , (18)



Oscillatory two- and three-dimensional thermocapillary convection 191

Ik3
= −

∫
Ω

[(
∂u

∂x

)2

+

(
∂u

∂y

)2

+

(
∂v

∂x

)2

+

(
∂v

∂y

)2
]

dΩ, (19)

with Ik1
, Ik2

and Ik3
denoting kinetic energy production, diffusion (also representing

the rate of work done by thermocapillary stresses), and dissipation, respectively.
Similarly, defining θ = 1

2
t2 as the fluctuation thermal energy, we find the rate of

change of θ to be

Dθ

Dτ
= −Re

(
tu
∂T0

∂x
+ tv

∂T0

∂y

)
+

1

Pr

[
∇2θ −

(
∂t

∂x

)2

−
(
∂t

∂y

)2
]
, (20)

and the rate of change of the total fluctuation thermal energy Θ to be

dΘ

dτ
=

d

dτ

(∫
Ω

θdΩ

)
= It1 + It2 (21)

in which

It1 = −Re
∫
Ω

(
tu
∂T0

∂x
+ tv

∂T0

∂y

)
d.Ω, (22)

It2 = − 1

Pr

∫
Ω

[(
∂t

∂x

)2

+

(
∂t

∂y

)2
]

dΩ (23)

are thermal energy production and dissipation, respectively.

3. Numerical aspects
To perform nonlinear stability analysis of thermocapillary convection through

numerical simulation, both efficiency and accuracy are extremely important for the
numerical solver.

3.1. The two-dimensional stream function–vorticity (ψ–ω) solver

For two-dimensional calculations in ψ–ω, the coupled system is solved by a finite-
volume-based scheme, in which the Poisson equation for ψ is solved by the SOR
method. Velocities are obtained as spatial derivatives of ψ. At the beginning of each
time step, a second-order-accurate extrapolation scheme is used to predict ψ at the
current time step from its previous values in order to obtain current velocities, and
therefore linearize both vorticity transport and energy equations. These two linearized
equations are then solved by the alternating direction implicit (ADI) method. All time
derivatives and spatial derivatives including boundary conditions are approximated
in second-order accuracy.

The ψ–ω code was also designed for outstanding performance on vector computers.
For example, on the CRAY C90 at the Pittsburg Supercomputing Center, this code
runs at up to 477 Mflops.

Validation of the two-dimensional solver was carefully done by comparing our
solutions with those available in the literature on a number of problems with steady
and transient solutions. Details of the validation can be found in Xu (1997). Two
examples of comparison are provided here.
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Pr Mesh Re(×10−4) -ψmin(×103) ωcore(×102) xc yc u(0.5, 1)(×102) Nux=0 Nux=1 Note

1.0 101× 101 10.0 3.21 −7.01 0.57 0.63 3.05 4.36 4.36 X&Z
64× 64N 10.0 3.23 −6.97 0.58 0.62 2.96 4.36 4.33 C&H
31× 31N 10.0 3.24 −7.29 N/A N/A 3.06 4.30 4.44 P&B

30 101× 101 2.0 1.69 −6.27 0.43 0.78 1.49 6.61 6.61 X&Z
92× 78N 2.0 2.13 −7.40 N/A N/A 1.86 6.42 6.29 C&H
74× 74N 2.0 1.82 −6.53 N/A N/A 1.61 7.14 6.69 P&B

50 101× 101 1.0 1.40 −6.19 0.36 0.80 1.12 5.91 5.91 X&Z
74× 74N 1.0 1.77 −7.57 N/A N/A 1.43 5.77 5.82 C&H
74× 74N 1.0 1.44 −6.01 N/A N/A 1.16 6.09 5.76 P&B

Table 1. Thermocapillary convection in a square cavity. Note: ‘N’ after the value of mesh resolution
indicates a non-uniform mesh. C&H, P&B and X&Z are Carpenter & Homsy (1989), Peltier &
Biringen (1993), and the present paper, respectively.

Group ψmax Frequency Mesh

This work 0.627 15.5 101× 41
Bottaro et al. 0.6370 15.30 62× 32
Ohshima and Ninokata NA 15.9 80× 20
Extremet et al. NA 15.7 81× 31N
Shimizu NA 15.9 81× 21
Pulicani et al. 0.62309 15.94 30× 23
Daube & Rida NA 15.80 105× 41

Table 2. Natural convection at Ra = 20 000, Pr = 0.15, and Ax = 4. Results of various
researchers are in Roux (1990).

One of our test cases is steady thermocapillary convection in a square cavity.
Numerical studies of this problem can be found in Carpenter & Homsy (1989) and
Peltier & Beringen (1993). Comparison of results is given in table 1 for a number of
combinations of Pr and Re. In the table, ψmin stands for minimum stream function
value, u(0.5, 1) is velocity at the centre of the top free surface. Nux=0 and Nux=1 are
average Nusselt numbers at x = 0 and x = 1 respectively. Excellent agreement is
reached for the first case of Pr = 1 and Re = 104, with difference being less than 3%.
Reasonably good agreement is also found in the other two cases.

The second test problem is oscillatory natural convection of the Pr = 0.015 fluid
in an Ax = 4.0 rectangular cavity. This model has received extensive attention.
Results from a number of groups were presented and compared at the 1989 GAMM
Workshop, see Roux (1990). Comparison is given in table 2 for the case of oscillatory
natural convection (Ra = 20 000) in a cavity with an adiabatic traction free surface.
Excellent agreement can be seen for the value of ψave which is the time average of
maximum stream function, and oscillation frequency of the flow field.

3.2. The three-dimensional primitive variable solver

For three-dimensional simulations, a finite-volume-based primitive variable solver
was developed. After discretizing the coupled partial differential equations, a semi-
implicit fractional step method is used for the time marching procedure of the
momentum equations (see Xu 1997 for details of the scheme). A non-staggered
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Ra Mesh Nuavg umax y vmax x Group

104 62× 62× 62N 2.10 0.201 0.183 0.225 0.883 FHKF
24× 24× 24 2.06 0.202 0.175 0.220 0.890 This Work
40× 40× 40 2.06 0.199 0.175 0.220 0.875 This Work

105 62× 62× 62N 4.36 0.147 0.145 0.247 0.935 FHKF
24× 24× 24 4.42 0.141 0.150 0.261 0.925 This Work
32× 32× 32 4.37 0.142 0.150 0.252 0.932 This Work
80× 80× 80 4.34 0.142 0.150 0.250 0.935 This Work

Table 3. Natural convection in a cube. Note: FHKF is Fusegi et al. (1991). Ra is the Rayleigh
number as defined in FHKF.

Mesh Recr1

81× 31 1.48× 103

131× 51 1.43× 103

201× 81 1.43× 103

Table 4. Recr1 for Pr = 6.78, Ax = 2.5 from different meshes.

mesh is used with all variables defined at the cell centre. The pressure-velocity
coupling is achieved through solving a Poisson equation for P , Kim & Moin (1985).
This Poisson equation is solved using the Jacobi iterative scheme with a V-cycle
multigrid procedure. Although the line-by-line Gauss–Seidel sweep converges faster
than the Jacobi sweep, the latter is more suitable for vector machines because
it provides longer vector length in the multigrid procedure even for the coarsest
grid.

Although the use of a non-staggered mesh is known as one source of spurious
behaviour of the pressure field in many schemes, no spurious behaviour has been
found in our pressure solution, mainly due to strong pressure–velocity coupling in
our scheme through accurate satisfaction of mass conservation.

The three-dimensional solver is validated by simulating laminar natural convection
in a cube. Fusegi et al. (1991) provided a high-resolution finite difference numerical
study for cases of 103 6 Ra 6 106. With Ra larger than 104, they used a 62× 62× 62
non-uniform mesh with cells carefully distributed according to the flow pattern. In
table 3, results comparison are given at different mesh resolutions. It can be seen
that, for Ra = 104, our solver with uniform mesh of around 24 cells per unit length
performs well in predicting average Nusselt number as well as maximum values of
u, v and their locations. For the case Ra = 105, our solver with uniform 32× 32× 32
mesh provides excellent results when compared with the much finer 80×80×80 mesh.

4. Results
4.1. Two-dimensional thermocapillary convection

4.1.1. Mesh dependence checking for Recr searching

Critical Reynolds numbers are sought using a bisection method until 2 to 3
significant digits in the value of Recr is obtained. This typically represents 1–3%
accuracy in the reported values. Uniform meshes are used in the computations with
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Figure 1. Stability diagram for a Pr = 6.78 fluid. Good agreement with results by Peltier &
Biringen (1993) is obtained.
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Figure 2. Stability diagrams in the (Re, Ax)-plane for fluids with Pr = 10.0, 6.78, 4.4 and 1.0.
Multiple regions are present when Pr > 4.4 and boundaries at different Pr do not intersect.

mesh resolution of 50 to 90 cells per dimensionless unit length depending on the
Reynolds number considered. Mesh-dependence of the results is checked at different
regions of parameter space. Table 4 gives an example from which it is seen that the
mesh resolution with 50 cells per unit length is sufficient for providing almost grid-
independent results in searching for critical Reynolds numbers of O(103). A coarser
mesh with 30 cells per unit length provides results with about 3% difference.
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Figure 3. Streamline patterns (a) and isotherms (b) for Pr = 4.4 flows in an Ax = 3.0 cavity at six
different Reynolds numbers – 100, 500, 1000, 1950, 5020 and 10 000, (i)–(vi) respectively. Recr1 is
about 1950 and Recr2 is about 5020 and mean plots are shown at these values. It is observed that
the thermocapillary flow gives rise to an interior that is cooler than the free surface just above. This
stratification results in overstability.

4.1.2. Stability diagrams

Peltier & Biringen (1993) considered a Pr = 6.78 fluid in rectangular cavities and
constructed a stability diagram in the (Ax,Ma)-plane within the range Ax 6 3.8 and
Ma 6 1.0×105. One of their interesting results is the possible existence of two stability
limits at a given Ax. Figure 1 gives a comparison between our stability diagram and
their’s (the relationship between our Re and their Ma is Re = Ma/(AxPr)). Good
agreement is found and both curves show the existence of a critical aspect ratio (Axcr ≈
2.3) below which the flow is stable in the considered range of Reynolds number. In
addition, there exists an unstable region bounded by two different critical Reynolds
numbers, i.e. as Re goes up, the flow first changes from steady to oscillatory at Recr1,
and then becomes stable again when Recr2 is reached. Recr2 grows monotonically
with Axwhile Recr1 does not. In the present work, we extend this investigation to
fluids with Pr = 1.0, 4.4 and 10.0, and provide stability diagrams for a wider range
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Figure 4. Temporal response of u for a point underneath the centre (X = 1.5) of the free surface.
(a–d) are for Re = 500, 1950, 5020 and 10 000, respectively, Pr = 4.4, and Ax = 3. With increasing
Re the flow goes through multiple transitions between steady and oscillatory states.

of aspect ratios and Reynolds numbers, in which additional interesting features are
found.

Figure 2 is the stability diagram we construct in the (Ax, Re)-plane for fluids with
Pr = 10.0, 6.78, 4.4 and 1.0. All curves are within the range 0.0 6 Ax 6 7.0 and
0.0 6 Re 6 1.3 × 104. Several interesting features can be seen from these curves. If
we look at the fluid with Pr = 4.4 as an example, the first critical aspect ratio is
around 2.6. Instability is possible for any Ax > 2.6. There is more than one unstable
region with Ar > 6.0, i.e. if Re increases from zero, the flow is first stable at low
Re, starts to oscillate at the first critical point (Recr1), goes back to stable state at
the second critical point (Recr2), and becomes oscillatory again as Re reaches its
third critical point (Recr3). The existence of the lower limit at (Recr1) was confirmed
in the experiments of Braunsfurth & Homsy (personal communication, 1996) where
they observed two-dimensional, multicellular oscillatory states inside our region of
instability. In addition, stability curves for fluids with different Pr do not cross each
other. Neutral curves of smaller-Pr fluid are always located inside curves of larger
Pr, i.e. when Pr becomes smaller, the critical aspect ratio always becomes larger, so
does the lowest critical Reynolds number. From the trend given by these curves, one
important conclusion that can be drawn is that, for fluids with very low Pr, which
are important in material processing of semi-conductors, large values of both critical
Ax and Re should be expected for the transition to oscillatory thermocapillary con-
vection. This conclusion is confirmed when we further studied a fluid with Pr = 0.5,
from which we find a much larger critical aspect ratio of about 10.75 and a Recr1 of
about 2.9× 104.
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Figure 5. Streamlines (a) and isotherms (b) for Pr = 4.4 flows in an Ax = 6.5 cavity at six different
Reynolds numbers – 100, 500, 1170, 1920, 2200 and 2910, (i)–(vi) respectively. Recr1 is about 1170,
Recr2 is 1920, and the first critical Re of the higher unstable region is 2910. Thermal stratification
similar to that in figure 3 is evident.

4.1.3. Influence of Re and Ax on the flow field with Pr = 4.4

At a fixed Ax = 3, figure 3 shows the influence of Re on flow structures. When
Re is very low, such as Re = 100, the flow is steady, temperature gradients do
not change much in the whole region, and a single cell structure of streamlines is
clearly observed. As Re increases to Re = 500 and Re = 1000, the flow remains
steady – see figure 4(a) for the temporal response; however, the pattern changes to
a two-cell structure with a stronger cell near the hot wall, and also, the size of this
stronger cell becomes larger when Re is increased from 500 to 1000. Concentration
of isotherms can be seen near the hot and cold walls in both figures 3(b) (ii)
and 3(b) (iii). Thermal stratification is evident with the interior becoming cooler
than the free surface just above. Further increase in Re to the first critical point,
which is around 1950, causes the convective flow to oscillate very weakly, with
fluctuations of flow quantities being about two orders smaller than the corresponding
time averages. The frequency of oscillations near this critical point is about 1.9 –
figure 4(b).

That the transition is to an oscillatory state may perhaps be argued as follows. A
disturbance that takes a fluid particle from the interior to the free surface simultane-
ously creates a cold spot due to the thermal stratification just described. Thus surface
tension is increased locally pulling surface fluid in and then back into the interior
by continuity. Hence the perturbation triggers a restoring mechanism conducive to
overstability, and an oscillatory, wave-like state develops.

As mentioned earlier, an interesting feature in the Pr = 4.4 stability diagram is the
existence of more than one unstable region when Ax > 6.0. For example, at Ax = 6.5,
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Figure 6. Snapshots of temperature disturbances of a Pr = 10 fluid in an Ax = 20 cavity at eight
evenly distributed instances within one oscillation period. Waves travel right to left as predicted by
SD. However, in contrast to the infinite layer, not all the cavity participates with the cold corner at
steady state.

we find that with increasing Re, the flow starts from stable state, becomes oscillatory
for 1170 < Re < 1920, goes back to stable state for 1920 < Re < 2910, and oscillates
again for Re > 2910. Figure 5 shows streamlines and isotherms for six typical points
corresponding to Re = 100, 500, 1170, 1920, 2200 and 2910.

For larger aspect ratios such as Ax = 20, more cells are expected in the multi-
cellular flow field if Re is big enough. The influence of both the hot and cold walls
decreases as the aspect ratio increases. The flow field in the central region of the cavity
can be expected to be consistent with that from SD’s infinite layer linear stability
analysis when Re is smaller or a little higher than its first critical value Recr1. These
expectations are confirmed by our analyses of the Ax = 20 case with Pr = 10.

4.2. Large aspect ratio case: Ax = 20 with Pr = 10

Here we look closely at the flow field near the first critical Re, which is about 1012.
The oscillation frequency at this Re is about 0.56. A hydrothermal wave propagating
toward the left-hand hot wall is evident in figure 6. In an infinite liquid layer, the
existence of this wave-like behaviour (nearly two-dimensional for large-Pr fluids),
was reported in SD from linear stability of thermocapillary convection. However,
a new phenomenon in our results is that this thermal wave seems to be generated
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Figure 7. (i) Mean temperatures at (a) Re = 1012, (b) 1023 and (c) 1500, respectively, with Pr = 10
and Ax = 20. (ii) Snapshots of corresponding temperature fluctuations, and (iii) velocity fluctuations
at the same Re as (i). (iv) The mean velocity field at Re = 1500. While all the waves are supercritical,
they fill the cavity and begin at the cold corner only at the highest Re.

near the centre of the cavity, and most of the region in the right-hand part of
the cavity, close to the cold surface, remains pretty calm. The starting point of
the thermal wave actually moves toward the cold wall as we increase Re, until it
occupies the whole cavity. This trend is obvious from figures 7(a) (ii), 7(b) (ii) and
7(c) (ii). Velocity fluctuations are given in figures 7(a) (iii), 7(b) (iii) and 7(c) (iii), from
which one can see the existence of multi-cellular flow structures. The last picture,
figure 7(c) (iv), is the mean velocity field corresponding to Re = 1500. A strong cell
structure can be seen in the region close to the hot wall, which is very similar to
the structure we saw in previous results for Ax = 6.5. Indeed, the structure of the
mean field is qualitatively almost the same for all three cases of Re = 1012, 1023 and
1500.

For Re = 1012, the mean temperature distribution on the free surface is given
in figure 8(a). It can be seen that the temperature variation in the central region is
almost linear with slope dT/dx = 0.028. Based on this slope, the critical Marangoni
number Mac, consistent with the definition for linear analysis, is about 283 which
matches very well with about 300 from SD. The difference is probably due to our
model which is both two-dimensional and with finite Ax. Figure 8(b) is a plot of the
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Figure 8. Variation of mean temperature on the free surface and mean velocity u at the centerline
x = 10 for the case of Re = 1012, P r = 10 and Ax = 20. This is essentially the return flow of SD
with the Marangoni number based on the straight line segment in (a).

mean velocity component U along the y-axis in the central region of the cavity which
is essentially the return flow of SD.

4.3. Two-dimensional energy analysis with Ax = 3 and Pr = 10

Here we report on energy analyses of flows with Reynolds numbers near both the
lower (Re = 1540) and higher (Re = 7410) critical points of the unstable region.
Temporal variations over one oscillation period are shown in figures 9(a) (i) and 9(a)
(ii) for the rate of change of the total fluctuation kinetic energy (dK/dτ) as well as
its components Ik1

(production), Ik2
(diffusion) and Ik3

(dissipation). It is seen that
dK/dτ oscillates with its time average being equal to zero, which means no kinetic
energy is added to the flow over each period of oscillation. This is consistent with
the fact that the flow field oscillates at a stable amplitude. Ik2

and Ik3
provide major

contributions with Ik2
being always positive (destabilizing) and Ik3

being always
negative (stabilizing). Both the time average and oscillating magnitudes of Ik1

are
much smaller than those of Ik2

and Ik3
, which indicate that the flow is strongly

viscous. However, the phase difference between Ik2
and Ik3

is always near π, thus
Ik3

always balances the effect of Ik2
, and therefore the smaller term Ik1

still has an
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Figure 9. Temoral variation of the rate of change of the total kinetic energy dK/dτ, the thermal
energy dΘ/dτ and their components Ik1

, Ik2
, Ik3

, It1 and It2 , in which (a) (i) and (b) (i) give results
for Re = 1540 (near the lower critical point), (a) (ii) and (b) (ii) provide results for Re = 7410 (near
the higher critical point). In the text it is argued that It1 provides the mechanism for instability.

apparant strong influence on the temporal behaviour of dK/dτ. In figure 9(a) (ii),
which is at the higher critical point, one can clearly see that dK/dτ oscillates at a very
close amplitude and a very small phase difference with Ik1

, while the phase difference
between Ik2

and Ik3
is almost π.

Results for thermal energy fluctuations (dΘ/dτ) and its components (It1 and It2 )
are given in figures 9(b) (i) and 9(b) (ii) for the lower and higher critical points,
respectively. As expected, dΘ/dτ oscillates with its time average being equal to zero,
since the temperature field also oscillates in a limit cycle. Although the time averages
of It1 and It2 have the same absolute value, the oscillation amplitude of It1 is much
larger than that of It2 . Furthermore, in both cases, the phase difference between
It1 and dΘ/dτ is very small. It may thus be argued that It1 , which is the rate of
transfer of thermal energy from the gradient of the mean field by the fluctuations
velocity to thermal disturbance, is the mechanism responsible for loss of stability. This
mechanism was also identified in Wanschura et al. (1995) as the high-Pr instability
mechanism. This conclusion is also consistent with the unstable thermal stratification
of the mean temperature fields described earlier.

We also investigated the spatial variations of the rate of change of both the kinetic
energy (Dk/Dτ) given by (15), and the thermal energy(Dθ/Dτ) given by (20) over
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Figure 10. Results of energy calculations with Pr = 10 and Ax = 3. (a) Mean flow, snapshots (at
τ = 0 of figure 9) of temperature, velocity, kinetic energy, and thermal energy fluctuations, (i)–(v)
respectively at Re = 1540. (b) Corresponding plots at Re = 7410. Strong sources and sinks for
kinetic energy locate near the free surface while those for thermal energy penetrate in the interior
in a manner dictated by the flow patterns in (i).

the whole domain at different time instants during one oscillation period. At the
instant corresponding to τ = 0 in figure 9, results are provided for Re = 1540 (near
Recr1) and 7410 (near Recr2) in figure 10 where it can be seen that most of the
strong sources and sinks of the fluctuation kinetic energy are located near the free
surface. This appears to be consistent with the location of the only driving force for
thermocapillary convection.

4.4. Three-dimensional studies

The influence of front and back sidewalls and possible motion in the third direction
have been neglected in two-dimensional studies. The purpose of the present three-
dimensional work is to find out their effects on flow instability.
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Figure 11. Variation of Recr1 as Ay changes from 2 to 20 with Pr = 4.4 and Ax = 3.
Damping effects are evident with Ay 6 5.

4.4.1. Cavities with Ax = 3 and varying Ay

Intuitively, the front and back sidewalls are expected to suppress oscillations so that
when the cavity width aspect ratio Ay is small the first critical Reynolds number(Recr1)
should be larger than its two-dimensional counterpart.

The first investigation is for a Pr = 4.4 fluid with fixed Ax = 3 and different values
of Ay . Attention is focused on changes of Recr1 as Ay varies from 20 down to 2.0. The
neutral curve in figure 11, obtained in similar way as in two dimensions, shows that
Recr1 changes slowly from around 850 at Ay = 20 to around 1100 at Ay = 5. However,
it goes up very fast as Ay becomes smaller than 5. Another interesting observation is
that when Ay is large, i.e. the influence of the sidewalls is small, Recr1 goes below 1000,
which is much smaller than the corresponding value of Recr1 = 1950 for the same
value of Pr = 4.4 and Ax = 3.0 in two-dimensional analysis. This suggests that there
must be some other three-dimensional mechanism strongly affecting flow instability
when Pr = 4.4 in a cavity with Ax = 3.0. This three-dimensional mechanism is
found to be the initiation of spanwise waves somewhat similar to the longitudinal
two-dimensional hydrothermal waves of SD.

Figure 12 shows snapshots corresponding to four instants of the temperature
perturbations on the free surface in a half oscillation period with Re = 850 and
Ay = 20. The other half of the period is omitted since every two instants with phase
difference of π have the same isotherm pattern with an opposite sign. Symmetry with
respect to the plane y = 10 is exhibited in these plots. In the central region the
isotherms form a number of cellular structures, moving from right to the left in the
x-direction. However, waves are triggered in the y-direction. This, we believe, is the
reason why we have instability at Re lower than the two-dimensional critical value
of 1950. We do not attempt quantitative comparisons with SD’s longitudinal waves
since they are triggered by a return flow which is not available in our cavity with
Ax = 3.

Similar calculations are also done at the larger Pr = 13.9 in a cavity with Ax = 3 and
Ay = 20. Recr1 is found to be about 1000, which is a little higher than the corresponding
two-dimensional Recr1 = 770. The reason for the different three-dimensional influence
on Recr1 with Pr = 4.4 and Pr = 13.9 is obtained from examination of free-surface
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Figure 12. Snapshots of temperature fluctuations on the free surface of a 3× 20× 1 cavity with a
Pr = 4.4 fluid at Re = 850 at four instances at T/8, T/4, 3T/8 and T/2, (a)–(d) respectively (T
is the period of oscillations). Spanwise waves are also triggered at this Re and are symmetric with
respect to y = 10.

plots. Mean temperature fields are given in figure 13(a) (i) and 13(b) (i) from which
one can find that isotherms are parallel in the central region for both cases. However,
the fluctuation temperature field with Pr = 4.4 in (a) (ii) are totally different from
that with Pr = 13.9 in (b) (ii): there is no periodic structure in the y-direction for
the Pr = 13.9 case. It is also observed that the magnitude of fluctuations of v in
(a) (iv) is slightly larger than that of u in (a) (iii) for the case of Pr = 4.4, while
fluctuations of u in (b) (iii) are more than one order of magnitude larger than that
of v in (b) (iv) for the case of Pr = 13.9. Thus, with Pr = 13.9, the streamwise
fluctuations are dominant and the spanwise fluctuations are too weak. Re of 1000
is simply not high enough to trigger spanwise waves. This is consistent with the
fact that the critical Marangoni number of the two-dimensional longitudinal waves
of SD increases with Pr. On the contrary, with Pr = 4.4, spanwise fluctuations are
very strong, even stronger than the streamwise fluctuations, which explains why Recr1
is overestimated in two-dimensional calculations when the only motion allowed is
streamwise.

4.4.2. A Pr = 13.9 fluid in a cavity with Ax = Ay = 15

Here Recr1 is found to be around 700 and the oscillation frequency is about 0.5. On
the free surface, in the region not too close to sidewalls at y = 0 and y = 15, the mean
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Figure 13. Comparison of free surface flows in a 3 × 20 × 1 cavity. (a) Pr = 4.4 and Re = 850
showing mean temperature distribution, snapshots of the fluctuations t, u and v, (i)–(iv) respectively.
(b) Corresponding snapshots for a Pr = 13.9 fluid at Re = 1000. Spanwise oscillations in (a) occur
at Re which is lower than the two-dimensional critical value of about 1950. In (b) sidewalls continue
to have a damping effect with an increased critical Re compared to the two-dimensional value of
770.
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Figure 14. Free surface results for the case of a Pr = 13.9 fluid in a 15× 15× 1 cavity at Re = 710.
(a) A snapshot of fluctuation isotherms, (b) of fluctuation velocity vector field, (c) and (d) are
contours of fluctuation velocity components u and v, respectively. Phase lines inclined at angles of
about ±15◦ to the y-axis are evident and are in good agreement with SD’s linear stability results.

temperature distribution along the streamwise direction is qualitatively very similar to
that shown in figure 8(a). It also has a linear central region but with dT/dx = 0.032.
Based on this slope, the critical Marangoni number corresponding to the definition
in SD is about 311 which is very close to their value of 295. The difference can be
attributed to the damping effect of the sidewalls.

In figure 14(a) a snapshot of temperature perturbations on the free surface is
given, in which one can see the existence of a multi-cellular structure symmetric with
respect to the central plane y = 7.5. The aspect ratio of these cells is about 1:3.8
which gives a wave-front inclination angle of about 15◦ with respect to the y-axis.
This is in good agreement with about 20◦ from linear theory. Figure 14(b) gives a
snapshot of the fluctuating velocity vector field, while (c) and (d) are contour plots
for the u and v components, respectively. The fluctuations u are about three times
larger than v, indicating again that streamwise perturbations are much stronger than
spanwise perturbations for larger Pr. Figure 15(a) (i) is the mean temperature field
in the x = 7.5 plane from which one can see the influence of the front and back
sidewalls is restricted to near-wall regions and hence isotherms in most of the central
region are parallel. Figures 15(a) (ii) and 15(a) (iii) show three-cell structures for the
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Figure 15. Motion in a 15 × 15 × 1 cavity with Pr = 13.9 and Re = 710. (a) Plane x = 7.5 and
gives (i) mean temperature distribution, (ii) and (iii) provide snapshots of fluctuation temperature
distribution and fluctuation velocity field, respectively. (b) Corresponding pictures in the plane
y = 7.5. Sidewalls have weak effects in most of the cavity with the x-motion in mid-cavity very
similar to that in the long two-dimensional cavity of figure 7.

temperature and velocity disturbance fields. Finally, from figures 15(b) (i), 15(b) (ii)
and 15(b) (iii), one finds structures of temperature perturbation and corresponding
velocity perturbation in the plane of y = 7.5 that are qualitatively very similar to
those in figure 7 corresponding to two-dimensional waves with Ax = 20 and Pr = 10.
We thus have travelling x-waves and standing y-waves which can be thought of as a
superposition of two hydrothermal waves propagating in the negative x-direction at
±15◦ with respect to y.

5. Conclusions
Two- and three-dimensional thermocapillary-driven convection is investigated pri-

marily to determine its stability characteristics. In two dimensions, neutral curves
are delineated in the (Re, Ax)-plane for fluids with Pr = 1.0, 4.4, 6.78 and 10. Inter-
esting features are discussed, including the existence of multi-unstable regions when
Pr > 4.4. Results are also provided to show the influence of Re and Ax on flow
structure. Energy analyses are performed on oscillatory flows with Re very close to
critical points. The roles of production, diffusion, and dissipation components of fluc-
tuation kinetic and thermal energies are discussed, and the mechanisms responsible
for transition to oscillatory states are pointed out.
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In three dimensions, the influence of front and back sidewalls as well as spanwise
fluctuations on transition was determined. With Pr = 4.4 and Ax = 3, these walls
have weak effect when Ay is greater than 5, and they severely suppress oscillations
when Ay is less than 3. However, at large Ay such as 20, due to the existence of
spanwise fluctuations, transition occurs at a much lower Re than that required by
pure streamwise instability. With a larger Pr of 13.9, sidewalls have a damping effect
even with Ay = 20. Direct numerical simulations of waves in a cavity with large
Ax and Ay were also performed. The waves observed near the first critical Reynolds
number are in good agreement with those predicted by linear stability of an infinite
layer.
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